Úvodní strana  >  Články  >  Ostatní  >  Dopplerův jev ve fyzice a astronomii - díl druhý

Dopplerův jev ve fyzice a astronomii - díl druhý

Dopplerovský snímek galaxie M33 v Trojúhelníku
Dopplerovský snímek galaxie M33 v Trojúhelníku
V minulém díle jsme ze zabývali osobností Christiana Dopplera a popsali si podstatu nerelativistického pohledu na Dopplerův jev. Uvedli jsme přitom všechny možnosti, které je třeba vzít v úvahu při jeho užití. Dnes se zaměříme na Dopplerův jev při rychlosti světla a budeme se tedy zabývat relativistickým pohledem na celý fyzikální problém.

6. Relativistický Dopplerův jev

Pro odvození Dopplerova jevu pro rychlosti v porovnatelné s rychlostí šíření elektromagnetického vlnění ve vakuu c je třeba nejprve uvést rovnice Lorentzovy transformace souřadnice a času. Přitom se omezíme na nejjednodušší případ.

Nechť jsou dány dvě vztažné soustavy S, S’, totožné v čase t = t’= 0. Nechť se S’pohybuje vůči S tak, že počátek O’soustavy S’se pohybuje po ose x rychlostí v (tudíž osy x a x’ splývají). Pak platí zejména:

x’ = (x – vt)/√[1 – (v/c)2],

t’ = (t – vx/c2)/ √[1 – (v/c)2]

(nečárkované veličiny platí pro soustavu S, čárkované pro S’). Nechť v okamžiku t = t’= 0 je vyslán z počátku soustav světelný signál šířící se m.j. i ve směru kladné poloosy x. Rovnice pro okamžitou elektrickou intenzitu vlnění na ose x v soustavě S může mít např. tvar

E = Eosin[2pf(t – x/c)]

v soustavě S a v soustavě S’ pak

E = Eo sin[2pf’(t’ – x’/c)].

Fáze světlené vlny nemůže být za této situace závislá na volbě vztažné soustavy, takže

f(t – x/c) = f’(t’ – x’/c),

a po dosazení

f.(t – x/c) = f’.{(t – vx/c2)/ √[1 – (v/c)2] - (t – vx/c2)/(c √[1 – (v/c)2])},

což lze upravit na rovnici

f.(t – x/c) = f’.(t – x/c)(1 + v/c)/ √[1 – (v/c)2].

Zřejmě tedy

f = f’.(1 + v/c)/ √[1 – (v/c)2],

a tudíž

f’= f.√[1 – (v/c)2]/(1 + v/c),

ale také

f ‘= f.√[(1 – v/c)/(1 + v/c)] = f.(1 – v/c)/ √[1 – (v/c)2].

Zde f představuje „laboratorní“ frekvenci, f’frekvenci pozorovanou. Připustíme-li, že (v/c)2 < 10-6 lze zanedbat, pak již pro v < 10-3 c , tedy v < 300 km/s, přechází relativistický vztah na klasický. Nerozlišitelnost pohybu zdroje od pohybu pozorovatele je zřejmá. Význam má jen pohyb relativní.

Pro poměr v/c pak platí, nahradíme-li f znakem fo a f’znakem f:

v/c = [1 - (f/fo)2]/[1 + (f/fo)2]

6.1. Příčný Dopplerův jev
Koná-li zdroj záření pohyb ve směru kolmém na směr pozorování dochází rovněž ke snížení frekvence v důsledku dilatace času:

f = fo√[1 - (v/c)2]

7. Význam

Závažnost Dopplerova jevu v astronomii je všeobecně známa, nicméně si ji připomeňme.

Především v důsledku jevu dochází k rozšíření spektrálních čar ve spektru hvězd. Zářící atomy mají rozmanité a dosti vysoké rychlosti (např. střední kvadratická rychlost atomů vodíku při 6000 K je větší než 12 km/s). Další rozostření je způsobeno případným turbulencemi v atmosférách hvězd a rotací hvězd.

Dopplerův jev umožňuje odhalit dvojhvězdy, nerozlišitelné v dalekohledech, pokud rovina oběhu složek není kolmá k pozorovacímu paprsku. Dochází k rozštěpení spektrálních čar, které kolísá podle velikosti radiální rychlosti složek. To umožňuje studium pohybu složek těchto tzv. spektroskopických dvojhvězd. I u obyčejných hvězd v Galaxii lze zjišťovat z posuvu spektrálních čar jejich radiální rychlosti.

Kosmologický červený posuv umožňuje určovat rychlost vzdalování galaxií a s přesností, se kterou je známa i Hubbleova konstanta, také jejich vzdálenosti.

V kosmonautice dopplerovské radiolokátory na kosmických sondách umožňují určit jejich rychlost vůči objektům ve Sluneční soustavě.

Poznámka: Dopplerův jev využívají k orientaci i některé druhy z řádu letounů. Např. vrápenec velký vysílá ultrazvuk konstantní frekvence a posuv frekvence vyhodnocuje pomocí rezonátoru v lebce.

Reference:
[1] Horáček., Létající savci (Academia, Praha 1986)
[2] www.wikipedia.org




Seriál

  1. Dopplerův jev ve fyzice a astronomii - díl první
  2. Dopplerův jev ve fyzice a astronomii - díl druhý


O autorovi

Miroslav Šulc

Miroslav Šulc

Narozen 1941, v roce 1963 promoval na přírodovědecké fakultě Univerzity J. E. Purkyně (dříve a nyní Masarykova univerzita) v oboru matematika-fyzika (s titulem promovaný fyzik-učitel). Od té doby zaměstnán jako učitel na střední škole. Od r. 1954 do r. 1986 externí spolupracovník brněnské hvězdárny. Od r. 1959 člen České astronomické společnosti. Od r. 1996 hospodář výboru SMPH. Od r. 2006 v definitivním důchodu.



19. vesmírný týden 2024

19. vesmírný týden 2024

Přehled událostí na obloze a v kosmonautice od 6. 5. do 12. 5. 2024. Měsíc bude v novu a čeká nás extrémně mladý srpek na večerní obloze. Slunce je hodně aktivní, nastaly silné erupce. Oblohu ozdobila slabá polární záře a nečekaně s ní se objevil i deorbitující horní stupeň Falconu 9. Planety jsou v tomto týdnu velmi obtížně viditelné. Pozorovat můžeme několik slabších komet. Na ranní obloze létají éta Aquaridy. K odvrácené straně Měsíce se vydala čínská sonda Chang’e 6 a na čínské orbitální stanici Tiangong se vyměnily tříčlenné posádky. Před 60 lety se narodil český astronom a popularizátor Václav Knoll. Před 15 lety proběhla poslední oprava vesmírného dalekohledu HST.

Další informace »

Česká astrofotografie měsíce

V zajetí barev

Titul Česká astrofotografie měsíce za duben 2024 obdržel snímek „V zajetí barev“, jehož autorem je Pavel Váňa   Kdo by neměl rád jaro, kdy po studených zamračených  dnech, skrovně prosvětlených hřejivými slunečními paprsky se příroda začíná probouzet. Zelenající se stromy jsou

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina, známa aj ako Messier 16 alebo NGC 6611, je mladá otvorená hviezdokopa v súhvezdí Had. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov od Zeme a je spojená s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 47031. Hviezdokopa M16 obsahuje približne 55 hviezd medzi 8. až 12. magnitúdou a na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Hmlovina sa rozprestiera na ploche s priemerom 60 svetelných rokov a je známa svojimi charakteristickými stĺpmi medzihviezdnej hmoty, ktoré sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Zaujímavosťou je, že podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu, Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, GSO 2" komakorektor, QHY 8L-C, SVbony UV/IR cut, Optolong L-eNhance filter, FocusDream focuser, guiding QHY5L-II-C, SVbony guidescope 240mm. Software: NINA, Astro pixel processor, GraXpert, Starnet++, Adobe photoshop 66x180 sec. Lights gain15, offset113 pri -10°C, 94x360 sec. Lights gain15, offset113 pri -10°C cez Optolong L-eNhance, master bias, 180 flats, master darks, master darkflats 7.4. až 14.5.2024 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »