Úvodní strana  >  Články  >  Kosmonautika  >  Curiosity 1. díl: MastCam

Curiosity 1. díl: MastCam

MastCam - detail. NASA/JPL
MastCam - detail. NASA/JPL
Na Facebookovém profilu Diskuzního fóra vesmir.thos.cz začal vycházet zajímavý seriál, který s laskavým svolením přebíráme a doplňujeme zajímavými obrázky a nechybí ani krátké video. Věříme, že příspěvky nezaujmou pouze tamnější fanoušky, ale i čtenáře astro.cz. Informace budou čerpány z tiskových zpráv, ale chceme tím usnadnit situaci uživatelům, kteří si nevědí rady s angličtinou. Přistání plánované na 6. srpna se blíží, tak bychom vám rádi čekání zpestřili. Dnes začneme přístrojem MastCam.

Jedná se o dvojici kamer (fotoparátů). V režimu fotografování pořizují snímky s rozlišením 1600 x 1200 pixelů, v režimu natáčení produkuje každá kamera 720p video (HD) se frekvencí 4 - 7 snímků/sekundu. MastCam bychom našli na "hlavě" vozítka - jsou umístěny asi 2 metry nad povrchem.

Snímek horninového bloku kamerou M-100 ze vzdálenosti 100 m. NASA/JPL-Caltech/MSSS
Snímek horninového bloku kamerou M-100 ze vzdálenosti 100 m. NASA/JPL-Caltech/MSSS
Snímek horninového bloku kamerou M-34 ze vzdálenosti 100 m. NASA/JPL-Caltech/MSSS
Snímek horninového bloku kamerou M-34 ze vzdálenosti 100 m. NASA/JPL-Caltech/MSSS
Jak jsme si už řekli - kamery jsou v systému MastCam dvě. Jedna je širokoúhlá (to je ta větší díra = kamera M-34, f=34 mm) a zabírá prostor o šířce 18° a výšce 15°. Její rozlišovací schopnosti jsou velmi dobré - na vzdálenost 2 metry od snímaného předmětu zachycuje 1 pixel půl milimetru. Na vzdálenost 1 kilometru pak 1 pixel zachycuje 22 centimetrů. Druhá kamera je "teleobjektiv" (menší díra = M-100, f=100 mm). Snímá menší prostor - na šířku jen 6° a na výšku 5°. Díky tomu dosahuje perfektního rozlišení - na vzdálenost jednoho kilometru má jeden pixel velikost 7,4 centimetru. Ve dvoumetrové vzdálenosti se jeden obrazový bod rovná 0,15 milimetru! Pro lepší představu s touhle kamerou byste od sebe dokázali rozlišit baseballový a fotbalový míč na vzdálenost odpovídající délce 7 fotbalových hřišť. Je to třikrát lepší výkon, než jaký měl dosud nejlepší systém dopravený na Mars.

Snímek horninového bloku kamerou M-100 ze vzdálenosti 50 m. NASA/JPL-Caltech/MSSS
Snímek horninového bloku kamerou M-100 ze vzdálenosti 50 m. NASA/JPL-Caltech/MSSS
Snímek horninového bloku kamerou M-34 ze vzdálenosti 50 m. NASA/JPL-Caltech/MSSS
Snímek horninového bloku kamerou M-34 ze vzdálenosti 50 m. NASA/JPL-Caltech/MSSS
Jelikož jsou kamery dvě, poslouží snímky z nich k vytvoření 3D fotografií a videí. Po vědecké stránce mají na starosti především mapování okolí vozítka - jsou to hlavní oči roveru i jeho řidičů. Kromě toho můžou nasnímat některé zajímavé jevy - třeba pohyb mraků, nebo zvířeného prachu v atmosféře. Díky umístění na otočném "krku" může systém MastCam pořídit kompletní 360° panorama okolí. Obě kamery dokáží ostřit na vzdálenost dva metry až nekonečno.

Porovnání snímků hornin ze vzdálenosti 10 metrů kamerami M-34 i M-100. NASA/JPL-Caltech/MSSS
Porovnání snímků hornin ze vzdálenosti 10 metrů kamerami M-34 i M-100. NASA/JPL-Caltech/MSSS
Pojďme se teď podívat na kamery MastCam po technické stránce - jedná se o kamery osazené CCD čipy. Díky tomu budou pořizovat poměrně kvalitní fotky - každý pixel bude mít ihned po zmáčknutí spouště udané barevné hodnoty červené, modré a zelené složky - bez dopočítávání z ostatních pixelů, jako tomu bývalo u dřívějších průzkumníků Marsu u kterých bylo potřeba kombinovat snímky v různých vlnových délkách (snímání stejné scenérie přes různě barevné filtry). Kromě toho má každá kamera k dispozici několik filtrů, které se umísťují mezi čočku a CCD snímač. Některé filtry umožňují třeba sledování v blízkém infraspektru, jiný filtr zase umožní přímý pohled do Slunce - díky tomu bude možné spočítat, kolik je v atmosféře prachu.

Další zajímavostí, kterou znají majitelé digitálních kamer, je nastavování bílé. MastCamy pracují ve dvou variantách - dokáží dělat jak snímky ve aktuálních barvách, které zachytí aktuální "atmosféru" na místě (představte si třeba načervenalou scenérii při západu Slunce), ale také umí snímat s vyváženou bílou, tedy ve skutečných barvách.

Každá kamera disponuje 8 GB flash pamětí pro ukládání dat. Pokud se Curiosity dostane na nové místo, umí na Zemi poslat pouze náhledy fotek v rozlišení cca. 150 x 150 pixelů. Důvodem je ušetření objemu přenášených dat. Z náhledů vědci usoudí, jak to na místě vypadá a fotografie v plném rozlišení se mohou poslat později. Počítač totiž vytváří miniatury automaticky a originály ukládá pro pozdější odeslání.

Kamery Curiosity na krátkém videu The Planetary Society. Jak vidíme, vozidlo používá k navigaci nejen čtyři kamery na stěžni (dvě záložní), ale i kamery pod palubní deskou, podobně jako Spirit a Opportunity, díky kterým vidí i pod sebe. A nechybí ani mikroskopická kamera na výsuvném rameni.

Tolik tedy povídání o kamerách MastCam. Doufám, že se Vám líbilo a našli jste v něm třeba nějaké novinky, o kterých jste nevěděli. A abych vás nalákal na příští příspěvek, prozradím, že zítra se budeme věnovat přístroji ChemCam.

Přeložil Dušan Majer, doplnil Martin Gembec

Převzato z facebookové stránky Diskuzního fóra o kosmonautice vesmir.thos.cz

Všechny části:
1. díl: MastCam
2. díl: ChemCam
3. díl: APXS
4. díl: MAHLI
5. díl: CheMin
6. díl: SAM
7. díl: REMS
8. díl: RAD
9. díl: DAN
10. díl: MARDI




O autorovi

Dušan Majer

Dušan Majer

Narodil se roku 1987 v Jihlavě, kde bydlí po celý život. Po maturitě na všeobecném soukromém gymnáziu AD FONTES vstoupil do regionální televize, kde několik let pracoval jako redaktor. Ve volném čase se věnoval kosmonautice. Postupně zjistil, že jej baví o tomto tématu nejen číst, ale že mnohem zajímavější je předávat tyto informace dál. Na podzim roku 2009 udělal dva velké kroky – jednak na internetu zveřejnil své první video o kosmonautice a navíc založil diskusní fórum o tomto oboru. Postupem času fórum rozrostlo o další služby a vznikl specializovaný zpravodajský portál kosmonautix.cz, který informuje o dění v kosmonautice. Rozběhla se i jeho tvorba videí na portálu Stream.cz. Pořad Dobývání vesmíru má sledovanost v desítkách tisíc a nasbíral již několik cen od Akademie věd za popularizaci vědy.



27. vesmírný týden 2024

27. vesmírný týden 2024

Přehled událostí na obloze a v kosmonautice od 1. 7. do 7. 7. 2024. Měsíc bude koncem týdne v novu. Ráno se potká s planetami Mars a Jupiter. Nejvýše je ráno nad jihovýchodem Saturn s velmi tenkým prstencem. Aktivita Slunce byla zpočátku zvýšená, díky třetímu návratu známé aktivní oblasti, ale snižuje se. Čínská mise Chang’e 6 skončila úspěšným dosednutím přistávacího modulu s až 2 kg vzorků z odvrácené strany Měsíce. Raketa Falcon 9 posunula rekord opakovaných letů a přistání na 22. Startoval také Falcon Heavy. Před 20 lety začala pracovat Cassini na orbitě Saturnu a před 970 lety zazářila v Býkovi jasná supernova v místě dnešní Krabí mlhoviny.

Další informace »

Česká astrofotografie měsíce

C/2021 S3 PanSTARRS

Titul Česká astrofotografie měsíce za květen 2024 obdržel snímek „C/2021 S3 PanSTARRS“, jehož autorem je Miloš Gnida   Dnešní vítězný snímek soutěže Česká astrofotografie měsíce, který pořídil astrofotograf Miloš Gnida, nám přináší pohled hned na několik astronomických objektů. Jednak,

Další informace »

Poslední čtenářská fotografie

Omega M17

Omega (iné názvy: Labutia hmlovina, Podkova, Homária hmlovina, Messier 17, M 17, NGC 6618) je oblasťou H II v súhvezdí Strelec. Objavil ju Jean-Philippe de Chéseaux v roku 1745. Hmlovina Omega je oblasťou, v ktorej vznikajú nové hviezdy a svieti excitovanou emisiou, spôsobenou vysokoenergetickým žiarením mladých hviezd. Názov Omega pochádza od Johna Herschela, ktorému jej tvar pripomínal veľké grécke písmeno omega. Jej celková jasnosť je 7,0 mag, takže sa dá pozorovať aj poľným triédrom. Na oblohe má rozmery 46´ krát 37´ a odhady jej vzdialenosti sú 3 260 svetelných rokov. Jej hmotnosť odhadujeme asi na 500 hmotností Slnka. Omega je tiež zdrojom infračerveného a rádiového žiarenia, pričom na rádiových vlnách patrí medzi najjasnejšie zdroje na oblohe. Plyn v hmlovine budí k žiareniu horúca hviezda 8,9 mag a spektrálneho typu A05e. Podobne ako Veľká hmlovina v Orióne, aj Omega je veľmi aktívnym miestom zrodu hviezd. Nové hviezdy vznikajú v hĺbke tmavých mrakov prachu a plynu. Vyše sto vysoko žiarivých mladých hviezd spektrálnych typov O a B postupne svojím žiarením odparujú tmavú prachovú prikrývku. Pred hmlovinou sa nachádza malá otvorená hviezdokopa s asi 50 hviezdami. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, GSO 2" komakorektor, QHY 8L-C, SVbony UV/IR cut, Optolong L-eNhance filter, FocusDream focuser, guiding QHY5L-II-C, SVbony guidescope 240mm. Software: NINA, Astro pixel processor, Starnet++, Adobe photoshop 47x180 sec. Lights gain15, offset113 pri -10°C, 108x360 sec. Lights gain15, offset113 pri -10°C cez Optolong L-eNhance, master bias, 210 flats, master darks, master darkflats 20.3. až 29.6.2024 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »