Úvodní strana  >  Články  >  Sluneční soustava  >  Na Titanu může být život

Na Titanu může být život

Titan ve viditelném světle.
Titan ve viditelném světle.
Bombardování atmosféry Saturnova měsíce Titan rentgenovými paprsky může vést k vytvoření základní složky DNA. Vyplývá to z nejnovějších laboratorních studií. Zatímco rentgenové záření může působit nepřetržitě, vhodné podmínky mohou nastat pouze tehdy, když dopady meteoroidů dopraví na povrch měsíce vodu. Tento objev tak poskytuje další důkazy, že Titan může být zralý pro život.

Do jisté míry se Titan více podobá Zemi než ostatním tělesům ve Sluneční soustavě. Vyskytují se na něm kontinenty, jezera, oblaka a snad i déšť - avšak zatímco na povrchu Země se nachází především půda a voda, Titan pokrývá led a kapalný metan. Pod ledovým povrchem se může také ukrývat oceán kapalné vody, v němž se může vyskytovat život.

Se svou atmosférou bohatou na dusík a s velkým množstvím organických látek vypadá Titan jako předloha velmi mladé Země.

Avšak jak vznikl na Zemi život? A dostal podobný proces šanci i na Titanu? Desítky let se vědci pokoušeli zopakovat vznik života v laboratorních podmínkách přeměnou materiálu, jaký byl pravděpodobně přítomen na mladé Zemi, a to působením elektrických výbojů nebo fotonů s vysokou energií. První takovýto pokus, pojmenovaný Miller-Urey experiment, byl uskutečněn již počátkem 50. let minulého století a výsledkem bylo vytvoření aminokyselin, základních stavebních bloků proteinů.

Základ DNA

Od té doby desítky vědeckých týmů rozšířily experiment, jehož parametry nastavili Stanley Miller a Harold Urey (University of Chicago). Používali rozmanité zdroje energie a různé směsi látek (metan, čpavek, vodík a voda) při modelování podmínek nejen na Zemi, ale i na povrchu mezihvězdných zrníček prachu či na Titanu.

V roce 1984 výzkumný tým, jehož členem byl i známý astronom Carl Sagan, vytvořil adenin, jednu z pěti základních složek DNA a RNA v prostředí, které svým složením odpovídalo podmínkám na Titanu. Energie byla dodávána použitím jiskrových elektrických výbojů k simulování blesků v atmosféře.

Avšak zatím nemáme stoprocentní důkazy existence blesků v atmosféře Titanu. Doposud jsme studovali bombardování atmosfér fotony, které v tomto případě přicházejí ze Slunce a které vedou pouze ke vzniku organických látek jako je benzen - avšak žádných složek DNA.

Nyní se týmu vědců pod vedením Sergio Pillinga (Catholic University of Rio de Janeiro, Brazílie) poprvé podařilo vytvořit adenin působením fotonů.

Pradávné impakty

Místo ultrafialového záření jako v předcházejících výzkumech však vědci použili tzv. měkké rentgenové záření. "Měkké rentgenové záření může proniknout hlouběji do atmosféry Titanu a dosáhnout hustějších oblastí než v případě ultrafialového záření," vysvětluje Pilling a dodává, že rentgenové záření spouští odlišné chemické reakce v atmosféře Titanu.

Pro modelování současné atmosféry Titanu použili vědci směs plynného dusíku a metanu, ke které přidali vodu a simulovali tak podmínky, kdy byl měsíc Titan bombardován kometami či planetkami obsahujícími vodu - což je situace, která se v mladé Sluneční soustavě vyskytovala velmi často.

Dodatečné teplo

Následně vědci bombardovali směs plynů rentgenovým zářením déle než 3 dny, což je množství energie, které Titan obdrží ze Slunce za období delší než zhruba 7 miliónů roků. Poté zjistili, že stále ještě zmrzlý zkušební vzorek obsahoval určité množství organických látek, avšak nic, co by se dalo nazvat stavebními bloky života.

Ale když zahřáli vzorky na pokojovou teplotu, adenin se objevil.

To znamená, že Titanův "hrnec", obsahující zárodky života, potřebuje dodatečný zdroj tepla k jeho aktivaci. Pokud existovalo v historii Titanu teplé období, například vybuzené vulkanickou aktivitou či dopady velkých meteoritů, pak mohl primitivní život dostat šanci alespoň na krátkodobou existenci.

Jedno je jisté: Titan bude více zahříván v budoucnosti - v období za několik miliard roků, kdy Slunce mnohonásobně zvětší svůj objem a stane se rudým obrem, jehož povrch bude sahat až do vzdálenosti oběžné dráhy Země.

Jedna molekula

Chris McKay, astrobiolog NASA říká, že je to velmi zajímavé zjištění, ale zároveň dodává, že pro život může být velmi obtížné udržet se na povrchu měsíce Titan po delší dobu. "Syntéza adeninu je velmi důležitá, ale protože Titan postrádá vodu a nezbytné molekuly obsahující kyslík, prebiotická syntéza nemohla probíhat příliš dlouho."

Avšak občasné dopady komet a meteoritů dopravily na povrch měsíce vodu, "a tenkrát všechno mohlo začít," říká McKay. "Bylo by zajímavé zjistit, jak daleko mohly tyto chemické reakce na Titanu postoupit."

Jonathan Lunine (University of Arizona) souhlasí. "Je to velmi zajímavé, avšak nikoliv klíčové." Lunine poukazuje na to, že adenin je pouze jednou z mnoha molekul, které obsahuje pozemský život. Vytvoření adeninu při experimentu ještě neznamená, že se na Titanu nacházejí všechny důležité elementy, nezbytné pro vytvoření života, jaký známe na Zemi.

Někteří vědci předpokládají, že mikroorganismy na Titanu mohou dýchat vodík, živit se organickými molekulami, klesajícími k povrchu z horních vrstev atmosféry a přitom vylučovat metan. Avšak tak daleko ještě důkazy o životě na Titanu nejsou. A pokud zde život existuje, může na rozdíl od pozemského života využívat zcela odlišné stavební bloky.

Zdroj: newscientist
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.



18. vesmírný týden 2024

18. vesmírný týden 2024

Přehled událostí na obloze a v kosmonautice od 29. 4. do 5. 5. 2024. Měsíc bude v poslední čtvrti a je vidět hlavně ráno a dopoledne. Slunce je poměrně hodně aktivní. Večer je velmi nízko Jupiter a ráno extrémně nízko Saturn. Pozorovat můžeme několik slabších komet. Český tým studentů uspěl se svým projektem v Houstonu. Čína chystá start rakety CZ-5 s návratovou misí Chang’e 6 pro vzorky z odvrácené strany Měsíce. Sonda Voyager 1 po pěti měsících opět komunikuje normálně a brzy by měla posílat i vědecká data. Před 70 lety objevil Kuiper měsíc Neptunu Nereida a před 30 lety se k Venuši vydala sonda Magellan.

Další informace »

Česká astrofotografie měsíce

ic2087

Titul Česká astrofotografie měsíce za březen 2024 obdržel snímek „IC 2087“, jehož autorem je Zdeněk Vojč     Souhvězdí Býka je plné zajímavých astronomických objektů. Tedy fakticky ne toto souhvězdí, ale oblast vesmíru, kterou nám na naší obloze souhvězdí Býka vymezuje. Najdeme

Další informace »

Poslední čtenářská fotografie

Messier 106

Messier 106 (tiež známa ako NGC 4258) je prechodná špirálová galaxia v súhvezdí Poľovné psy. Objavil ju Pierre Méchain v roku 1781. M106 je od Zeme vzdialená asi 22 až 25 miliónov svetelných rokov. M106 obsahuje aktívne jadro klasifikované ako Seyfert typu 2 a prítomnosť centrálnej supermasívnej čiernej diery bola preukázaná z rádiových vlnových pozorovaní rotácie disku molekulárneho plynu obiehajúceho vo vnútornej oblasti s priemerom svetelného roku okolo čiernej diery. NGC 4217 je možná spoločná galaxia Messier 106. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, GSO 2" komakorektor, QHY 8L-C, SVbony UV/IR cut, Optolong L-eNhance filter, FocusDream focuser, guiding QHY5L-II-C, SVbony guidescope 240mm. Software: NINA, Astro pixel processor, GraXpert, Siril, Adobe photoshop 169x180 sec. Lights gain15, offset113 pri -10°C, 94x360 sec. Lights gain15, offset113 pri -10°C cez Optolong L-eNhance, master bias, 180 flats, master darks, master darkflats 20.4. až 30.4.2024

Další informace »