Úvodní strana  >  Články  >  Ostatní  >  Radiometrické a fotometrické veličiny v astronomii - Díl třetí

Radiometrické a fotometrické veličiny v astronomii - Díl třetí

Lidské oko
Lidské oko
V předcházejících dvou dílech jsme se věnovali pouze radiometrickým veličinám. V dnešní závěřečné části se zaměříme na veličiny fotometrické. Vysvětlíme si například vnímání elektromagnetického vlnění zrakovým orgánem, spektrální světelnou účinnost záření nebo veličinu známou jako světelný tok. Také nás čeká celkové shrnutí radiometrických a fotometrických veličin v přehledné tabulce.

Fotometrické veličiny

Vnímání elektromagnetického vlnění zrakovým orgánem.

Zrakový orgán člověka nevnímá elektromagnetické vlnění ve všech vlnových délkách stejně efektivně. Tu část elektromagnetického spektra, na níž je zrakový orgán citlivý nazýváme světlem. Za světlo považujeme elektromagnetické vlnění v rozsahu vlnových délek od 380 nm do 760 nm (nanometr = 10-9 m), přičemž uvedené hranice jsou velmi vágní, neboť citlivost oka na záření byla zjištěna v širší oblasti. (Ve školské fyzice je praktické uvádět tento interval, ježto jeho horní hranice je dvojnásobkem dolní.)

Receptorem světla v oku jsou čípky a tyčinky. Elektrická složka světelné vlny v nich vyvolává fotochemický děj, zapříčiňující vznik elektrických pulsů, postupujících po nervových vláknech přes synapse a další buňky do zrakových center v mozku.

Čípky obsahují tři druhy chemických látek ( v každém čípku jeden druh), citlivých na různé části spektra. Tím je umožněno vnímání barev.Úhrnná spektrální citlivost čípků má maximum pro l = 555 nm. Čípky jsou aktivní ve dne - tzv. fotopické vidění. Tyčinky obsahují jedinou chemickou látku ( rodopsin), tudíž neumožňují vnímaní barev. Maximum citlivosti je pro l = 507 nm (mírně variabilní hodnota). Tyčinky jsou aktivní za tmy - skotopické vidění. Posuv "spektrální citlivosti" je znám jako Purkyňův jev.

Spektrální světelná účinnost záření

Spektrální světelná účinnost záření (světelná účinnost monofrekvenčního záření) (Kl) je empirická funkce vlnové délky vyjadřující efekt, který vyvolá spektrální zářivý tok ve zrakovém orgánu. (Tato definice není metrologická, nýbrž vychází ze způsobu výstavby tohoto článku.) Vztahuje se na "průměrný" zrakový orgán. Funkce má různé hodnoty pro vidění fotopické a skotopické.

Světelný tok

Součinem funkcí Pl .Kl pro fotopické vidění obdržíme novou funkci nazývanou spektrální světlený tok (Fl). Plocha pod grafem této funkce v intervalu od nuly do nekonečna udává světelný tok (F) (který je tedy integrálem podle vlnové délky zmíněného součinu od nuly do nekonečna). Jednotkou světelného toku je 1 lumen (lm). Světelný tok je analogickou fotometrickou veličinou k zářivému toku.

Svítivost

Svítivost (I)je podíl elementu světelného toku dF a nepatrného prostorového úhlu dW, do kterého je tento světelný tok vyzařován:

I = dF/ dW

Z hlediska metrologie je však svítivost základní fyzikální veličinou. Proto v SI není jinak definována. Její jednotkou je kandela (cd).

Kandela je svítivost v daném směru zdroje, který vysílá monofrekvenční záření frekvence 540.1012 Hz a jehož zářivost v tomto směru činí (1/683) wattů na steradián.

Svítivost je analogickou fotometrickou veličinou k zářivosti. Udaná frekvence odpovídá vln. délce 555 nm, tedy maximu fotopické spektrální účinnosti monofrekvenčního záření. Pro element světelného toku platí dF = IdW. Pro izotropní zdroj je F = 4pI.

Z výše uvedeného plyne, že lumen je odvozenou jednotkou: 1 lm = 1 cd.sr.

Poznámka: Ve školské fyzice se začalo používat termínu "monofrekvenční" místo "monochromatický". Skutečně také "jednobarevné" světlo nemusí obsahovat pouze jedinou frekvenci, i když světlo jediné frekvence se nám jeví jako "jednobarevné".

Hustota světelného toku

Tato veličina, značená j, souvisí se světelným tokem tak, jako hustota zářivého toku s tokem zářivým. Jednotkou je 1 lm.m-2.

j = dF/dSn.

(Smysl veličiny dSn je uveden výše.)

Hvězdná velikost

Ve viditelném oboru záření je hvězdná velikost definovaná opět Pogsonovou rovnicí, avšak v argumentu logaritmu vystupuje hustota světelného toku, tedy

m1 - m2 = 2,5 log (j2/j1).

Jednotkou je "mag". Opět platí, že v astronomické literatuře najdeme zásadně jiná značení v argumentu logaritmu, ba i jiné veličiny, např. nedefinované "intenzity", "jasnosti" nebo v nejlepším případě osvětlení.

Jas

Jasem (L) je diferenciální podíl svítivosti I nepatrné plošky dS povrchu zdroje ve směru pozorování a kolmého průmětu dSn této plošky do tohoto směru

L = dI/dSn = dI/(dS.cosa),

kde a je úhel sevřený směrem pozorování a normálou plošky dS. Jednotkou je 1 cd.m-2.

Kandela na čtvereční metr je jas zdroje, jehož svítivost na 1 m2 zdánlivé plochy zdroje je rovna 1 kandele. Zdánlivou plochou se přitom rozumí velikost průmětu skutečné plochy do roviny kolmé ke směru záření.

V astronomické literatuře je jas obvykle označován symbolem "B", neboť "L" je vyhrazeno pro zářivý výkon, nazývaný svítivostí.

Takto definovaná jednotka jasu je však nenázorná. Stejnou úvahou, jaká byla provedena v případě záře, dojdeme k výsledku, že jas lze vyjádřit v jednotkách lm/(m2.□o), přičemž opět platí

1 lm.m-2.(□o)-1 = 3282,8 lm.m-2.sr-1

V tomto případě lze najít převodní vztah mezi uvedenou jednotkou a jednotkou mag/□o, i když jen pro zvláštní případ. Hvězdě 0 mag. spektrálního typu A0 přísluší hustota světelného toku 2,1 mlm/m2. Z Pogsonovy rovnice obdržíme vztahy

1 lm.m-2.(□o)-1 = -14,2 mag.(□o)-1
1 lm.m-2.(□o)-1 = -23,0 mag.sr-1 .

"Zdánlivý jas" hvězd

Na první pohled se zdá, že je jas bodových objektů nedefinován. Skutečný jas opravdu nelze z hvězdné velikosti bez dalších informací určit. Můžeme však určit "zdánlivý jas" na základě úvahy o ohybu světla.

Při průchodu světla kruhovým otvorem (např. zornicí oka) vzniká ohybový jev ve formě ohybového kroužku, jehož úhlový poloměr má velikost 1,22 l/d, kde d je průměr otvoru. Světelný tok klesá od osy maxima plynule k nule. Na stínítku (např. sítnici oka) se zobrazí kotouček, jehož "jasu" ubývá spojitě k okraji. Předpokládejme, že ho lze "nahradit" kotoučkem o polovičním průměru stejně jasným po celé ploše. Jeho úhlový průměr bude tedy 1,22 l/d. Při průměru zřítelnice 8 mm a vlnové délce světla 555 nm je hodnota výrazu 0,0000846 rad = 0,00485o. Příslušný prostorový úhel je pak 1,847.10-5o. Převrácená hodnota je 5,41.104(□o)-1. Odečteme-li od hvězdné velikosti hvězdy 2,5 násobek logaritmu této hodnoty, tj. 11,8, obdržíme zdánlivý jas v jednotkách mag/□o. Tento převodní faktor je ovšem značně proměnlivý v závislosti na průměru zřítelnice.

Přehled veličin a jejich analogie

radiometr. veličina značka jednotka fotometr. veličina značka jednotka
zářivý tok Pe W světelný tok F lm
spektrální. zář. tok Pl W.m-1 spektrální svět. tok Fl lm.m-1
zářivost Ie W.sr-1 svítivost I cd
int. vyzařování He W.m-2 světlení H lm.m-2
spektr. vyzařování Hl W.m-3 spektrální světlení Hl lm.m-3
zář Le W.m-2.sr-1 jas L cd.m-2
spektrální zář Ll W.m-3.sr-1 spektrální jas Ll cd.m-3
hustota zář. toku Y W.m-2 hustota svět. toku j lm.m-2

Reference:
[1] Klimeš B., Kracík J., Ženíšek A., Základy fyziky II (Academia, Praha 1972)
[2] Šindelář V., Smrž L., Nová soustava jednotek (SPN Praha, 1989)
[3] Šolc M., Švestka J. , Vanýsek V., Fyzika hvězd a vesmíru (SPN, Praha 1983)
[4] Vanýsek V., Základy astronomie a astrofyziky( Academia, Praha 1980)




Seriál

  1. Radiometrické a fotometrické veličiny v astronomii - Díl první
  2. Radiometrické a fotometrické veličiny v astronomii - Díl druhý
  3. Radiometrické a fotometrické veličiny v astronomii - Díl třetí


O autorovi

Miroslav Šulc

Miroslav Šulc

Narozen 1941, v roce 1963 promoval na přírodovědecké fakultě Univerzity J. E. Purkyně (dříve a nyní Masarykova univerzita) v oboru matematika-fyzika (s titulem promovaný fyzik-učitel). Od té doby zaměstnán jako učitel na střední škole. Od r. 1954 do r. 1986 externí spolupracovník brněnské hvězdárny. Od r. 1959 člen České astronomické společnosti. Od r. 1996 hospodář výboru SMPH. Od r. 2006 v definitivním důchodu.



19. vesmírný týden 2024

19. vesmírný týden 2024

Přehled událostí na obloze a v kosmonautice od 6. 5. do 12. 5. 2024. Měsíc bude v novu a čeká nás extrémně mladý srpek na večerní obloze. Slunce je hodně aktivní, nastaly silné erupce. Oblohu ozdobila slabá polární záře a nečekaně s ní se objevil i deorbitující horní stupeň Falconu 9. Planety jsou v tomto týdnu velmi obtížně viditelné. Pozorovat můžeme několik slabších komet. Na ranní obloze létají éta Aquaridy. K odvrácené straně Měsíce se vydala čínská sonda Chang’e 6 a na čínské orbitální stanici Tiangong se vyměnily tříčlenné posádky. Před 60 lety se narodil český astronom a popularizátor Václav Knoll. Před 15 lety proběhla poslední oprava vesmírného dalekohledu HST.

Další informace »

Česká astrofotografie měsíce

V zajetí barev

Titul Česká astrofotografie měsíce za duben 2024 obdržel snímek „V zajetí barev“, jehož autorem je Pavel Váňa   Kdo by neměl rád jaro, kdy po studených zamračených  dnech, skrovně prosvětlených hřejivými slunečními paprsky se příroda začíná probouzet. Zelenající se stromy jsou

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina, známa aj ako Messier 16 alebo NGC 6611, je mladá otvorená hviezdokopa v súhvezdí Had. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov od Zeme a je spojená s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 47031. Hviezdokopa M16 obsahuje približne 55 hviezd medzi 8. až 12. magnitúdou a na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Hmlovina sa rozprestiera na ploche s priemerom 60 svetelných rokov a je známa svojimi charakteristickými stĺpmi medzihviezdnej hmoty, ktoré sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Zaujímavosťou je, že podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu, Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, GSO 2" komakorektor, QHY 8L-C, SVbony UV/IR cut, Optolong L-eNhance filter, FocusDream focuser, guiding QHY5L-II-C, SVbony guidescope 240mm. Software: NINA, Astro pixel processor, GraXpert, Starnet++, Adobe photoshop 66x180 sec. Lights gain15, offset113 pri -10°C, 94x360 sec. Lights gain15, offset113 pri -10°C cez Optolong L-eNhance, master bias, 180 flats, master darks, master darkflats 7.4. až 14.5.2024 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »