Úvodní strana  >  Články  >  Osobnosti  >  Rozhovor: David Čapek - Mizení sodíku z meteoroidů

Rozhovor: David Čapek - Mizení sodíku z meteoroidů

Spektrum meteoru
Spektrum meteoru
Země se denně střetává s drobnými kamínky, které nám na obloze vytváří krásné meteory. Systematické sledování meteorů přineslo zajímavé zjištění, že v některých z nich chybí sodík. Ten jinak spolu s několika dalšími prvky svítí ve všech meteorech. Výzkumem tohoto jevu se zabývá dr. David Čapek z Astronomického ústavu AV ČR.

Z čeho dokážete zjistit chemické složení meteorů?
Chemické složení meteorů jsme schopni zjistit z pozorování jejich spekter. Ta jsou charakteristická jasnými emisními čarami a to především čarami hořčíku, sodíku a železa. O něco méně výrazná je například čára vápníku a některých dalších prvků.

Vy jste našli řadu meteorů, ve kterých právě sodík chybí. Čím se to dá vysvětlit?
Kolegové z oddělení meziplanetární hmoty publikovali práci, ve které uveřejnili asi stovku pozorovaných spekter, především sporadických meteorů. U nich zjistili, že čára sodíku je méně jasná, než by odpovídalo předpokladu, že materiál je chondritický. Tyto meteory rozdělili do tří skupin. V první skupině jsou meteory pouze se spektrálními čarami železa. To zřejmě odpovídá železným meteoritům, u kterých došlo k ochuzení o sodík už v mateřském asteroidu v důsledku magmatické diferenciace. Druhá skupina jsou tělesa, jejichž dráhy jsou typu Halleyovy komety. U nich se předpokládá, že ke ztrátě sodíku došlo na povrchu mateřských komet, které byly dlouhodobě bombardovány částicemi kosmického záření. Třetí skupina je typická tím, že se přibližuje ke Slunci na méně než 0,2 astronomické jednotky (Merkur má 0,38). Předpokládá se, že k úniku sodíku došlo v tomto případě důsledkem ohřevu v blízkosti Slunce.

To ochuzení o sodík jste pozorovali například u meteorického roje Geminid. Jak tento roj přišel o sodík?
U kometárních meteoroidů, jako jsou například Geminidy, předpokládáme, že jsou to tělesa, která si nelze představit jako malé monolitické kaménky, jako je například většina meteoritů, které dopadly na zemský povrch. Spíše se jedná o jakési slepence malých prachových částeček, kterým říkáme prachové koule. Jsou to tělesa, která mají velkou porozitu. My předpokládáme, že sodík je zřejmě v jednotlivých prachových zrnech obsažen zejména v alkalických živcích, jílových minerálech, případně vápenatých sklech. Když se meteoroidy s touto strukturou dostanou do blízkosti Slunce, tak sodík začne v důsledku vysoké teploty difundovat na povrch těchto malých zrníček. Následně se díky tepelné desorpci sodík uvolní do pórového systému meteoroidu a proudí k povrchu, odkud uniká do meziplanetárního prostoru.

Na čem závisí rychlost unikání sodíku z meteorického tělesa?
V prvé řadě závisí na nejmenší vzdálenosti od Slunce a tomu odpovídající teplotě, kterou meteoroid dosáhne. Podle našich výpočtů je potřeba, aby se meteoroid přiblížil na méně než 0,2 astronomické jednotky. Pak už se dá hovořit o podstatném úniku sodíku. Další důležitou vlastností, je zrnitost meteoroidu, tzn. velikost zrníček, ze kterých sestává.

Jak dlouho trvá přibližně trvá, než se z meteorického tělesa všechen sodík vypaří?
My jsme prováděli výpočty pro meteorický roj Geminidy a u nich jsme zjistili, že k podstatnému úniku sodíku může dojít už za 2000 let. Ale obecně to říct nelze, to závisí na mnoha faktorech, jak už jsem uvedl: hlavně na vzdálenosti od Slunce a zrnitosti. V některých případech může stačit jediný průlet perihéliem, pokud je přitom vzdálenost od Slunce dostatečně malá.

Prachové zrnko v meteoroidu
Prachové zrnko v meteoroidu
Pomáhá vám měření množství sodíku, které chybí ve spektru meteoru, ke zjišťování vnitřní stavby meteorických tělísek?
Určitě ano. Například model, který jsme vyvinuli pro roj Geminid, nám potvrdil, že Geminidy nejsou monolitická tělesa, ale jsou to už výše zmíněné prachové koule. Podle našich výpočtů by z těles odpovídající velikosti, bez struktury prachové koule, nemohlo k úniku sodíku vůbec dojít.

Váš výzkum se týká těch nejmenších těles ve sluneční soustavě, tedy meteoroidů. Dá se váš výzkum nějak aplikovat na planetky?
Ano dá. Například existuje určitá možnost, že se některé asteroidy (které dnes mají perihélium dále než ony 0,2 astronomické jednotky) mohly někdy v minulosti přibližovat ke Slunci mnohem těsněji. V dnešní době by se to dalo dokázat tak, že bychom zjistili, že tyto planetky mají povrch ochuzený o sodík podobně jako meteoroidy.

Proč jste si z těch všech prvků, které ve spektrech meteorů vidíte, vybrali právě sodík?
K tomu nás vedly dva důvody. Jednak ten, že v některých meteorech pozorujeme úbytek sodíku a ne úbytek třeba hořčíku a potřebovali jsme tento fakt vysvětlit. Navíc sodík je ze zmíněných prvků nejtěkavější a on jediný mohl takto jednoduše utéci.

Rozhovor vznikl na základě přednášky Davida Čapka na pravidelném semináři Astronomického ústavu AV ČR. Semináře se konají zpravidla každé první pondělí v měsíci na pracovišti v Ondřejově. Převzato z - www.asu.cas.cz




O autorovi

Petr Sobotka

Petr Sobotka

Petr Sobotka je od r. 2014 autorem Meteoru - vědecko-populárního pořadu Českého rozhlasu. 10 let byl zaměstnancem Astronomického ústavu AV ČR v Ondřejově. Je tajemníkem České astronomické společnosti. Je nositelem Kvízovy ceny za popularizaci astronomie 2012. Členem ČAS je od roku 1995.

Štítky: David Čapek, Osobnost


19. vesmírný týden 2024

19. vesmírný týden 2024

Přehled událostí na obloze a v kosmonautice od 6. 5. do 12. 5. 2024. Měsíc bude v novu a čeká nás extrémně mladý srpek na večerní obloze. Slunce je hodně aktivní, nastaly silné erupce. Oblohu ozdobila slabá polární záře a nečekaně s ní se objevil i deorbitující horní stupeň Falconu 9. Planety jsou v tomto týdnu velmi obtížně viditelné. Pozorovat můžeme několik slabších komet. Na ranní obloze létají éta Aquaridy. K odvrácené straně Měsíce se vydala čínská sonda Chang’e 6 a na čínské orbitální stanici Tiangong se vyměnily tříčlenné posádky. Před 60 lety se narodil český astronom a popularizátor Václav Knoll. Před 15 lety proběhla poslední oprava vesmírného dalekohledu HST.

Další informace »

Česká astrofotografie měsíce

V zajetí barev

Titul Česká astrofotografie měsíce za duben 2024 obdržel snímek „V zajetí barev“, jehož autorem je Pavel Váňa   Kdo by neměl rád jaro, kdy po studených zamračených  dnech, skrovně prosvětlených hřejivými slunečními paprsky se příroda začíná probouzet. Zelenající se stromy jsou

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina, známa aj ako Messier 16 alebo NGC 6611, je mladá otvorená hviezdokopa v súhvezdí Had. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov od Zeme a je spojená s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 47031. Hviezdokopa M16 obsahuje približne 55 hviezd medzi 8. až 12. magnitúdou a na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Hmlovina sa rozprestiera na ploche s priemerom 60 svetelných rokov a je známa svojimi charakteristickými stĺpmi medzihviezdnej hmoty, ktoré sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Zaujímavosťou je, že podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu, Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, GSO 2" komakorektor, QHY 8L-C, SVbony UV/IR cut, Optolong L-eNhance filter, FocusDream focuser, guiding QHY5L-II-C, SVbony guidescope 240mm. Software: NINA, Astro pixel processor, GraXpert, Starnet++, Adobe photoshop 66x180 sec. Lights gain15, offset113 pri -10°C, 94x360 sec. Lights gain15, offset113 pri -10°C cez Optolong L-eNhance, master bias, 180 flats, master darks, master darkflats 7.4. až 14.5.2024 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »