Úvodní strana  >  Články  >  Ostatní  >  Přednáškový cyklus k 60. výročí založení Fyzikálního ústavu AV ČR

Přednáškový cyklus k 60. výročí založení Fyzikálního ústavu AV ČR

Snímek z rastrovacího mikroskopu Autor: Fyzikální ústav AV ČR
Snímek z rastrovacího mikroskopu
Autor: Fyzikální ústav AV ČR
Spolu s posterovou výstavou, která proběhne od 27. 11. do 19. 12. 2014, jsme pro Vás připravili i cyklus šesti přednášek vynikajících popularizátorů, kteří představí významná a zajímavá témata z činnosti jednotlivých vědeckých sekcí Fyzikálního ústavu AV ČR.

Přednášky proběhnou v budově Akademie věd ČR na Národní 3, Praha 1 v sále č. 206 (výstavu najdete ve foyer téže budovy). Začátky přednášek jsou v 17:30, potrvají asi hodinu, poté bude následovat diskuse. Vstup na přednášky je zdarma, před jejich začátkem bude podáváno drobné občerstvení. Je nezbytná pouze předchozí rezervace místa na webové adrese fzu-rezervace.avcr.cz.

Pátek 28. 11. - 17:30. Tajemství nejintenzivnějšího laseru na světě.
František Batysta

Přednáška provede posluchače světem ultraintenzívního laserového záření; po seznámení se základními principy činnosti laseru se dozvíte o metodách generace intenzivních ultrakrátkých pulsů a jejich neobyčejných vlastnostech. Dále představíme aplikace takových laserů v oblasti medicíny, průmyslu i vědy a v závěru se soustředíme na popis vývoje laserů pro ELI Beamlines – budoucí nejintenzivnější laserový systém na světě.

Céva Autor: Fyzikální ústav AV ČR
Céva
Autor: Fyzikální ústav AV ČR

Středa 3. 12. – 17:30. Rastrovací mikroskopie – naše oko do světa atomů.
RNDr. Pavel Jelínek, Ph.D.

Rastrovací mikroskopy nám umožňují nejen zobrazovat jednotlivé atomy či molekuly na povrchu pevné látky, ale také s nimi cíleně pohybovat či je modifikovat. Vynález rastrovacích mikroskopů, oceněný v roce 1986 Nobelovou cenou za fyziku, byl jedním z rozhodujících impulsů pro nástup éry nanotechnologií. V rámci přednášky představíme základní principy rastrovacích mikroskopů, současné trendy a využití v různých vědních oblastech (fyzika pevných látek, chemie i biologie). Připomeneme také historii, dosažené úspěchy a současný výzkum prováděný pomocí rastrovacích mikroskopů ve Fyzikálním ústavu.

Pátek 5. 12. – 17:30. PERUN, PALS a HiLASE – zkoumání hmoty při extrémně vysokých hustotách energií.
RNDr. Josef Krása, CSc.

V úvodu přednášky se zmíníme o prvním laserovém systému s výkonem 100 GW známým jako PERUN, který byl ve FZÚ vybudován a používán až do roku 1996, a to především k výzkumu generace iontů. Nové období našeho výzkumu laserem generovaného plazmatu, které začalo v září roku 2000 otevřením Výzkumného centra PALS, což je společné pracoviště Fyzikálního ústavu a Ústavu fyziky plazmatu AV ČR, bude uvedeno představením jak laserového systému PALS (Prague Asterix Laser System), tak i základních experimentů a výsledků této laboratoře.Výsledky PALS v prvé řadě reprezentuje zinkový rentgenový laser čerpaný laserovým systémem PALS. Jeho špičkový výkon 100 MW a jím generovaná energie představují rekordní hodnoty dosažené v tomto oboru. Rovněž se zmíníme o urychlování iontů pomocí laserového systému PALS a odstraňování povrchových vrstev pevných terčů pomocí intenzivního měkkého rentgenového záření, které vyřazuje laserem generované plazma. Závěr přednášky bude věnován programu v září otevřené laboratoře HiLASE, která se zabývá technologickým vývojem nové generace diodově čerpaných pevnolátkových laserů (DPSSL) s vysokým výkonem a vysokou opakovací frekvencí.

Schéma molekulárního motorku Autor: Fyzikální ústav AV ČR
Schéma molekulárního motorku
Autor: Fyzikální ústav AV ČR

Úterý 9. 12. – 17:30. Molekulární motory: Perpetuum mobile na obzoru?
RNDr. František Slanina, CSc.

Hmota je jeden velký rezervoár energie. Jak ji ale využít k užitečné činnosti? Pokusíme se naznačit, jak se s touto otázkou vypořádávají živé organismy a jak dokážou pohánět neuvěřitelné nanomotorky uvnitř každé buňky. Odtud je už jen krok k tomu, aby i člověk začal konstruovat podobné nanomechanismy. A to se skutečně daří. Ale buďte klidní: perpetuum mobile to stále ještě není.

Středa 10. 12. – 17:30. Jak prodloužit život člověka novými laserovými a plazmatickými technologiemi?
prof. Ing. Miroslav Jelínek, DrSc., a RNDr. Zdeněk Hubička, Ph.D.

V roce 1960 byl spuštěn první laser a od té doby se laserové technologie rozšířily téměř do všech odvětví lidské činnosti. Laser se využívá i pro přípravu nových materiálů pro vesmír, elektroniku a biomedicínu. V rámci přednášky představíme nové laserové technologie pro přípravu anorganických a organických materiálů pro biosenzory, protézy a perspektivní součástkovou základnu elektroniky. Podrobněji se budeme věnovat výsledkům vývoje nového typu uretrálního katetru, stomatologických náhrad a laserovým metodám pro zlepšení funkčnosti cév, chlopní a kloubních protéz. Nízkoteplotní plazma je ionizovaný plyn s horkými elektrony, studenými ionty a neutrálními atomy či molekulami. Toto silně nerovnovážné skupenství hmoty lze použít k plazmochemickým procesům, kterých při teplotách nižších než 400 K není možné dosáhnout jinak. Klíčovým nástrojem této plazmochemie jsou horké elektrony s teplotami kolem 20 000 K, které menší částice ionizují, excitují a disociují, ale těžší ionty a molekuly příliš neohřejí. To je základ vysoké reaktivity při nízké teplotě. V přednášce představíme impulzní nízkoteplotní plazmové systémy, které umožňují přípravu krystalických polovodivých oxidů třeba i na tepelně citlivých plastech. Zmíníme se i o tom, jak lze nízkoteplotní plazma použít v medicíně k hojení ran.

Observatoř Pierre Auger, fluorescenční detektor a FRAM Autor: Martin Mašek
Observatoř Pierre Auger, fluorescenční detektor a FRAM
Autor: Martin Mašek

Pátek 19. 12. – 17:30. Století kosmického záření.
RNDr. Jiří Grygar, CSc.

Už od konce XIX. století řešili fyzikové záhadu slabé vodivosti vzduchu a tento výzkum umožnil v průběhu prvnich dvou dekád XX. století ukázat, že za větší část vodivosti vzduchu odpovídá kosmické záření. Objev francouzského fyzika Pierra Augera, že toto záření vytváří v atmosféře spršky sekundárních částic, které lze poměrně lehce zaznamenávat a tím zpětně určit parametry částic primárniho kosmického záření, neobyčejně usnadnil další rozvoj oboru. Většina primárních částic kosmického záření ovšem nese elektrický náboj, takže jejich trajektorie v kosmickém prostoru podléhají změnám směru letu vlivem magnetických polí, která prakticky vyplňují vesmír. Naštěstí pozorované částice extrémně vysokých energií jsou těmito poli zakřivovány tak málo, že lze aspoň přibližně určit směr, odkud vyletěly. V současné době vyniká v tomto oboru mezinárodní Observatoř Pierra Augera v Argentině, na jejíž výstavbě i současném vědeckém provozu se významně podílejí pracovníci Fyzikálního ústavu AV ČR ve spolupráci s odborníky Společné laboratoře optiky v Olomouci a MFF UK v Praze.




O autorovi

Štítky: Fyzikální ústav


39. vesmírný týden 2024

39. vesmírný týden 2024

Přehled událostí na obloze a v kosmonautice od 23. 9. do 29. 9. 2024. Měsíc bude v poslední čtvrti a je vidět hlavně ráno a dopoledne. Večer je jen velmi nízko u obzoru Venuše, celou noc je viditelný Saturn, v druhé polovině noci Mars a Jupiter. Aktivita Slunce se dočasně snížila. Kometa C/2023 A3 zřejmě opravdu chystá velkolepé představení. Sestava Super Heavy Starship pro pátý zkušební let je již sestavena na startovním stolu a už se testuje Starship pro šestý test, přesto se neletí. Sojuz MS-25 přistane s posádkou po rekordně dlouhém pobytu na ISS. Před 380 lety se narodil Ole Christensen Rømer, který poprvé zkusil spočítat rychlost světla na základě pozorování úkazů Jupiterových měsíců.

Další informace »

Česká astrofotografie měsíce

Slunce

Titul Česká astrofotografie měsíce za srpen 2024 obdržel snímek „Slunce“, jehož autorem je Jakub Lieder.   Známe jej všichni. Ráno, zosobněné bohem Slunce Heliem, vyráží se svým spřežením od východu na západ a přináší Zemi blahodárné světlo. Na západě se jeho koně napojí a napasou a

Další informace »

Poslední čtenářská fotografie

Sh2-101 Tulipán

Sharpless 101 (Sh 2-101) je emisná hmlovina v oblasti H II, ktorá sa nachádza v súhvezdí Labuť. Niekedy sa nazýva aj Tulipánová hmlovina, pretože pri fotografickom zobrazení sa zdá, že pripomína obrys tulipánu. Katalógoval ju astronóm Stewart Sharpless vo svojom katalógu hmlovín z roku 1959. Nachádza sa vo vzdialenosti približne 6 000 svetelných rokov (5,7 × 1016 km; 3,5 × 1016 míľ) od Zeme. Sh 2-101, aspoň v oblasti pozorovanej zo Zeme, sa nachádza v tesnej blízkosti mikrokvazaru Cygnus X-1, miesta jednej z prvých predpokladaných čiernych dier. Cygnus X-1 sa nachádza asi 15′ západne od Sh 2-101. Sprievodca hviezdy Cygnus X-1 je superobor spektrálnej triedy O9.7 Iab s hmotnosťou 21 hmotností Slnka a 20-násobkom polomeru Slnka. Perióda dvojhviezdy je 5,8 dňa a dvojicu od seba delí 0,2 astronomickej jednotky. Čierna diera má hmotnosť 15 hmotností Slnka a Schwarzschildov polomer 45 km. Rázová vlna (Bowhock) je vytváraný prúdom energetických častíc z čiernej diery pri ich interakcii s medzihviezdnym prostredím. Vidno ho ako slabý oblúk na pravom okraji mojej fotografie. Prepracovaná verzia s pridanými snímkami. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, GSO 2" komakorektor, Baader Mark III komakorektor, QHY 8L-C, SVbony UV/IR cut, Optolong L-eNhance filter, IDAS NB3 filter, FocusDream focuser, guiding QHY5L-II-C, SVbony guidescope 240mm. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 175x180 sec. Lights gain15, offset113 pri -10°C, 118x600 sec. Lights gain15, offset113 pri -10°C cez Optolong L-eNhance, 83x600 sec. Lights gain15, offset113 pri -10°C cez IDAS NB3, master bias, 420 flats, master darks, master darkflats 9.7. až 21.9.2024 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »