Úvodní strana  >  Články  >  Vzdálený vesmír  >  Rozhovor: Jiří Grygar - kosmické záření z kosmické stanice

Rozhovor: Jiří Grygar - kosmické záření z kosmické stanice

Logo AMS-02
Logo AMS-02
Americký raketoplán Endeavour vynesl na oběžnou dráhu kromě Krtečka i vzácný náklad - velmi citlivý přístroj zvaný alfa magnetický spektrometr. Ten bude po instalaci vně Mezinárodní kosmické stanice provádět podrobná měření kosmického záření. Přinášíme rozhovor na toto téma.

Co přesně bude mít alfa magnetický spektrometr za úkol? Na tuto otázku redaktorky Jany Olivové odpovídal v rozhovoru pro Český rozhlas - Vltava astrofyzik doktor Jiří Grygar z Fyzikálního ústavu Akademie věd. Přinášíme přepis rozhovoru z 19. května 2011 , který najdete ve zvukové podobě na stránkách www.rozhlas.cz/mozaika/veda.



Jaké záření bude spektrometr měřit?
Jeho úkolem je měřit kosmické záření, které přichází z celé Galaxie, a zjišťovat jeho vlastnosti v závislosti na energiích. Kosmické záření má totiž rozmanité energie. Z tohoto rozdělení se potom dá usoudit, jaké jsou zdroje tohoto záření, a co se tedy ve vesmíru vlastně nachází v prostoru mezi galaxiemi, hvězdami a také pochopitelně ve sluneční soustavě.

Alfa magnetický spektrometr
Alfa magnetický spektrometr
Na jaké vědecké otázky má tento pokus odpovědět?
Experiment byl navržen americkým fyzikem Tingem už v roce 1994 a NASA ho přijala jako nosný experiment proto, že má s Mezinárodní kosmickou stanicí problém, že se tam zatím žádná velká věda nedělala. Ovšem tento experiment - to už velká věda je. Je to jednak drahá věda, protože pokus sám přijde americké poplatníky na dvě miliardy dolarů - a to nepočítám vypuštění raketoplánu - a jednak proto, že řeší velký problém soudobé fyziky. Spočívá v tom, že se fyzikové, ale také astronomové diví, proč vesmír, jak se zdá, obsahuje pouze hmotu a nikoliv také stejné množství antihmoty.

Pravděpodobně to nějak souvisí s počátkem vesmíru, s velkým třeskem. Jasný důkaz o tom, co se vlastně tehdy stalo, že je dnes antihmota vzácná, ale nemáme. Čili jeden z úkolů tohoto spektrometru je hledat důkazy pro, anebo proti existenci antihmoty v kosmickém záření. A byl by to velký převrat, kdyby se podařilo konečně určit, zda tam nějaká antihmota vůbec je - a když, jak je jí málo, anebo jak je jí hodně.

Spektrometr je vyzvedáván z raketoplánu. Autor: space-multimedia.nl.eu.org
Spektrometr je vyzvedáván z raketoplánu.
Autor: space-multimedia.nl.eu.org
Pokud vím, tak alfa magnetický spektrometr už navazuje na podobná dřívější měření. Na jaká konkrétně?
Dříve než byl spektrometr vypuštěn, už měl svého menšího bratříčka, který startoval v roce 1998 na raketoplánu. Tam se vyzkoušela jeho funkce - podobal se tedy tomu dnešnímu spektrometru. Když se zpracovávala měření z tohoto tehdejšího experimentu, tak tam byl určitý přebytek částic, kterým říkáme elektrony a pozitrony - pozitrony jsou právě antičástice. Čili z toho se zdá, že by něco podivného v té fyzice mohlo být. Hledají se proto částice, které se nazývají strangelety.

Jejich název pochází z anglického strange (podivný): My totiž rozlišujeme několik druhů základních elementárních částic, kterým říkáme kvarky. Běžná hmota, z které jsme my, z které jsou hvězdy, z které jsou planety, se skládá většinou jenom ze dvou kvarků. Ty mají písmenka "u" a "d". Potom existuje ještě třetí kvark, který byl objeven částicovými fyziky v urychlovačích, a ten se jmenuje "s" jako "strange" - tedy "podivný kvark". Pochopitelně je podivný, když je jenom někdy.

A tak se vyslovila domněnka, že existují částice, které se skládají z těchto tří kvarků: to znamená, že je tam kromě těch běžných ještě onen třetí, ten podivný - to jsou ty strangelety. A kdyby se podařilo najít důkazy pro jejich existenci, což ten spektrometr v principu může, byl by to velmi fundamentální objev fyziky. No a pak jako vždy u nového experimentu, který dělá něco, co se ještě předtím nedělalo, existuje i velká naděje, že se najde něco, na co jsme vůbec předtím nepomysleli. Čili že bude nějaké velké překvapení.

Umístění AMS-02 na ISS
Umístění AMS-02 na ISS
To jsou dobré důvody, aby byl alfa magnetický spektrometr umístěn na Mezinárodní kosmickou stanici. Přesto není přijímán tak úplně jednoznačně. Proč?
Ten spektrometr na stanici má odpůrce mezi různými fyziky, kteří říkají, že dnes by bylo možné za daleko menší peníze postavit podobné zařízení na Zemi, které by bylo citlivější, mělo by tedy větší možnosti objevit něco nového. A že tedy ten výzkum na kosmické stanici je jenom taková zástěrka, která má ospravedlnit velké výdaje na Mezinárodní kosmickou stanici - a na tom jistě něco je.

Jsou dále také lidé, kteří si myslí, že ten hlavní důvod, to znamená objevování antihmoty, je už vyřešen, protože astronomové mezitím získali dostatečné množství údajů o vzdáleném vesmíru. Kdyby byla antihmota ve vzdáleném vesmíru, tak bychom měli mnoho záření gama, které sledovaly jiné družice už dlouhá léta, a to záření neexistuje. Prostě tam není. Z toho si tedy myslíme, že antihmota je vskutku ve vesmíru buď velmi vzácná, nebo neexistuje vůbec. To jsou tedy věci, které jsou na pokraji takové velké vědecké politiky, ale popravdě řečeno, důležitá je ta fyzika.

V každém případě je úžasné, že se podařilo na kosmickou stanici dopravit tak těžké zařízení, které má hmotnost 7 tun, a instalovat ho. Mohlo by měřit po celý zbývající věk Mezinárodní kosmické stanice - a ten byl nyní prodloužen alespoň po stránce administrativní, takže se počítá s tím, že stanice bude pracovat ještě ve 20. letech 21. století.

Další informace:
Podrobné zpravodajství z mise raketoplánu v češtině den po dni, včetně instalace AMS-02 19. května - www.astro.cz/clanek/4687
Instalace AMS-02 na www.dokosmuskrtkem.cz




O autorovi



51. vesmírný týden 2024

51. vesmírný týden 2024

Přehled událostí na obloze a v kosmonautice od 16. 12. do 22. 12. 2024. Měsíc po úplňku je vidět v druhé polovině noci a bude koncem týdne v poslední čtvrti. Na večerní obloze září nejvýrazněji Venuše nad jihozápadem a Jupiter nad východem. Nad jihem je ještě slabší Saturn a později večer vychází Mars. Vidět jsou i slabší planety Uran a Neptun. A protože ráno je nyní jitřenkou Merkur, máme možnost vidět všechny planety. Byly vydány podrobnosti, jak přesně došlo k havárii vrtulníčku Ingenuity na Marsu. SpaceX letos láme rekordy na všech stranách. Před 40 lety započala mise sondy Vega 2, dvojice sond, které zkoumaly Venuši a Halleyovu kometu.

Další informace »

Česká astrofotografie měsíce

Kométa Tschuchinshan-ATLAS nad Spišským hradom

Titul Česká astrofotografie měsíce za listopad 2024 obdržel snímek „Kométa Tschuchinshan-ATLAS nad Spišským hradom“, jehož autorem je slovenský astrofotograf Róbert Barsa.   Listopadové kolo soutěže „Česká astrofotografie měsíce“ vyhrál opět snímek komety Tschuchinshan-ATLAS. Ostatně,

Další informace »

Poslední čtenářská fotografie

NGC1909 Hlava čarodejnice

Veríte v čarodejnice? Lebo ja som Vám hlavu jednej takej vesmírnej čarodejnice aj vyfotil. NGC 1909, alebo aj inak označená IC 2118 (vďaka svojmu tvaru známa aj ako hmlovina Hlava čarodejnice) je mimoriadne slabá reflexná hmlovina, o ktorej sa predpokladá, že je to starobylý pozostatok supernovy alebo plynný oblak osvetľovaný neďalekým superobrom Rigel v Orióne. Nachádza sa v súhvezdí Eridanus, približne 900 svetelných rokov od Zeme. Na modrej farbe Hlavy čarodejnice sa podieľa povaha prachových častíc, ktoré odrážajú modré svetlo lepšie ako červené. Rádiové pozorovania ukazujú značnú emisiu oxidu uhoľnatého v celej časti IC 2118, čo je indikátorom prítomnosti molekulárnych mrakov a tvorby hviezd v hmlovine. V skutočnosti sa hlboko v hmlovine našli kandidáti na hviezdy predhlavnej postupnosti a niektoré klasické hviezdy T-Tauri. Molekulárne oblaky v IC 2118 pravdepodobne ležia vedľa vonkajších hraníc obrovskej bubliny Orion-Eridanus, obrovského superobalu molekulárneho vodíka, ktorý vyfukovali vysokohmotné hviezdy asociácie Orion OB1. Keď sa superobal rozširuje do medzihviezdneho prostredia, vznikajú priaznivé podmienky pre vznik hviezd. IC 2118 sa nachádza v jednej z takýchto oblastí. Vetrom unášaný vzhľad a kometárny tvar jasnej reflexnej hmloviny silne naznačujú silnú asociáciu s vysokohmotnými žiariacimi hviezdami Orion OB1. Prepracovaná verzia. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 150/600 (150/450 F3), Starizona Nexus 0.75x komakorektor, QHY 8L-C, SVbony UV/IR cut, Gemini EAF focuser, guiding QHY5L-II-C, SVbony guidescope 240mm. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 209x240 sec. Lights gain15, offset113 pri -10°C, master bias, 90 flats, master darks, master darkflats 4.11. až 7.11.2024 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »