Úvodní strana  >  Články  >  Kosmonautika  >  Obří dalekohled na Měsíci?

Obří dalekohled na Měsíci?

Návrh dalekohledu pro umístění na Měsíci.
Návrh dalekohledu pro umístění na Měsíci.
Obrovský dalekohled s objektivem, tvořený tekutým zrcadlem, umístěný na povrchu Měsíce, bude mít několiksetkrát větší citlivost než Hubblův kosmický dalekohled HST. Italský astronom Ernesto Capocci (Naples Observatory) již v roce 1850 navrhoval použít rotující „mísu“, naplněnou rtutí jako zrcadlo astronomického dalekohledu. V praxi tuto myšlenku realizoval o 50 let později Robert W. Wood (Johns Hopkins University). V současné době uvažuje Roger Angel skutečně v astronomických měřítcích. Předpokládá, že by bylo možné dopravit na povrch našeho souputníka dalekohled o průměru až 100 m.

V podobě optické plochy dalekohledu, odrážející dopadající záření, předpokládá využití tekutého zrcadla v obrovském rotujícím „talíři“, jehož průměr by mnohokrát převyšoval současné dalekohledy (rovnoměrná rotace zrcadla je zde nutná k vytvoření správné optické plochy objektivu, v tomto případě reflektoru). O tento „měsíční dalekohled s tekutým zrcadlem“ (LLMT – Lunar Liquid Mirror Telescope) projevil velký zájem Institut perspektivních koncepcí NASA (NASA Institute for Advanced Concepts, NIAC) – v současné době pro něj Roger Angel dokončuje zpracování studie perspektivity a realizovatelnosti tohoto projektu. „Na první pohled je tato myšlenka naprosto šílená,“ říká astronom Paul Hickson. „Avšak čím hlouběji člověk vniká do detailů projektu, tím více dochází k závěru, že tento projekt je zcela reálný.“

Ve skutečnosti podobných projektů již na Zemi několik existuje. Jedná se například o velký dalekohled Large Zenith Telescope, třetí největší dalekohled v Severní Americe, opatřený tekutým zrcadlem o průměru 6 m. Avšak na Měsíci, kde je mnohem nižší gravitace a kde není žádná atmosféra, bude možné realizovat vskutku grandiózní projekt. Podle plánu Rogera Angela se bude jednat o dalekohled se zrcadlem o průměru 100 m, které bude schopno soustředit 1736krát více světla než Hubblův kosmický dalekohled na oběžné dráze kolem Země.

Co je však ještě důležitější, projekt LLMT bude 10krát až 20krát levnější než dalekohled se stejně velkým objektivem z leštěného skla: povrch tekutého zrcadla „vyleští“ do požadovaného tvaru fungující přírodní zákony. A navíc tekuté zrcadlo nevyžaduje masivní podpůrnou konstrukci, která je nezbytná u mnohatunových (tuhých) zrcadel. Avšak očekávat, že vše bude velice snadno a levně realizovatelné, nelze: stavba takovéto obří konstrukce, a ještě k tomu na povrchu Měsíce, si vyžádá velké náklady. Podle předběžných odhadů zmenšená varianta se zrcadlem o průměru 20 m bude cenově srovnatelná s realizací kosmického dalekohledu JWST (James Webb Space Telescope), tj. přibližně 4,5 miliardy dolarů. Avšak takovýto dalekohled by již byl schopen rozlišit objekty 100krát slabší než JWST.

Své výhody má i zvolené místo. Umístíme-li dalekohled na povrchu Měsíce, můžeme zapomenout na nepříznivý vliv atmosféry na kvalitu obrazu, což je velký problém při pozorování velkými dalekohledy ze zemského povrchu. Vezmeme-li v úvahu skutečnost, že záření nejstarších a nejvzdálenějších objektů ve vesmíru je výrazně posunuto směrem k červenému konci spektra, o to větší výhodou bude nepřítomnost atmosféry. Infračervená oblast spektra je obzvlášť zajímavá pro pozorování vzdálených objektů s rudým posuvem větším než 7.

Bohužel projekt má i celou řadu „háčků“. Například nízké teploty na povrchu Měsíce (v období měsíční noci) nedovolí použít na výrobu zrcadla rtuť – což je v pozemských podmínkách obvyklá náplň rotujících zrcadel. Na Měsíci zkrátka ztuhne (rtuť tuhne již při teplotě 38 stupňů pod nulou). Hlavním úkolem při konstrukci měsíčního dalekohledu tedy bude výběr vhodné tekuté látky s nízkým bodem tuhnutí na výrobu zrcadla, která se navíc minimálně vypařuje. Tímto problémem se zabývá Ermanno Borra z Kanady. Na povrch tekutiny bude nanesena velmi tenká vrstvička stříbra. Tato vrstvička neslouží jen jako optická (odrazná) plocha pro záření, ale také chrání kapalinu před vypařováním.

Dlouhou dobu byla také problémem konstrukce mechanismu, který by otáčel zrcadlem bez toho, aby se na něj přenášely sebemenší vibrace – dokud vědci nenavrhli použít několik rotujících nádob, umístěných jedna v druhé. Avšak Angel a Borra navrhli jiné řešení – vzduchová ložiska a přesné elektromotory, osazené optickými senzory. Na Měsíci je však vzduchu nedostatek, proto budou v případě LLMT použity supravodivé magnetické polštáře.

Existuje ještě jeden vážný nedostatek dalekohledů s kapalným zrcadlem – nelze je totiž naklánět. Takovým dalekohledem je možné pozorovat pouze objekty, které se v daný moment nacházejí v zenitu nebo v jeho blízkosti (odtud i název již zmiňovaného dalekohledu Large Zenith Telescope). Naštěstí v případě výzkumu vzdálených objektů toto ohraničení není až tak důležité – v těchto velkých vzdálenostech je vesmír prakticky homogenní, ať se podíváme kterýmkoliv směrem.

A co nyní čeká dalekohled s tekutým zrcadlem o průměru 100 m, který by mohl být umístěn na povrchu Měsíce? Už je téměř jasné, jak bude dalekohled vypadat, jak bude zkonstruován, otázkou zatím je, kde se vezmou peníze na jeho financování. Realizaci projektu čistě v automatickém režimu si zatím nikdo nedovede představit. Nutné bude obnovení pilotovaných letů na Měsíc, což je projekt, na kterém se již pracuje. Odborníci se shodují v tom, že dalekohled s tekutým zrcadlem nelze realizovat na povrchu Měsíce dříve než v roce 2020. Vzhledem k harmonogramu návratu amerických astronautů na Měsíc je však tento termín až příliš optimistický.

Rtuťové zrcadlo o průměru 3,7 m.
Rtuťové zrcadlo o průměru 3,7 m.

Jestliže nalijeme rtuť do rotující nádoby, kapalina se rozteče a zaujme podobu tenké vrstvičky - mimořádně hladké parabolické plochy, která může sloužit jako hlavní astronomické zrcadlo. Práci na vývoji takového zrcadla pro měsíční dalekohled se věnuje mezinárodní skupina odborníků, jejímž členem je i Ermanno Borra (Laval University's Center for Optics, Photonics, and Laser, COPL – Quebec, Kanada). Na snímku je rtuťové zrcadlo o průměru 3,7 m, které vyrobili pracovníci Laval University.

Projekt, který dříve vypadal jako science fiction, se dočkal nového zájmu v roce 2004, kdy se o něj začali zajímat pracovníci NASA Institute for Advanced Concepts (NIAC). Hlavním problémem nyní je najít takovou kapalinu pro zhotovení primárního zrcadla na Měsíci, která by byla tekutá i za teploty kolem minus 150 stupňů (což je teplota na noční straně Měsíce).

Ermanno Borra se svými spolupracovníky navrhuje použít k vyřešení problému kombinace různých materiálů. Úspěšně nanesli na tzv. iontovou kapalinu tenkou vrstvičku stříbra pomocí pokovení ve vakuu. Iontové kapaliny jsou soli, které jsou tekuté i za teplot nižších než -100 °C, jsou složeny výhradně z iontů a obvykle u nich nedochází k významnějšímu odpařování při pokojové a nižší teplotě. Napařená vrstvička stříbra je mimořádně hladká, vysoce reflexivní, zůstává stabilní několik měsíců a zabraňuje vypařování kapaliny, použité k vytvoření zrcadla. Předpokládá se nanesení dvojité vrstvy: první vrstva bude tvořena chrómem, a teprve na ni bude napařena vrstvička stříbra.

Místo přepravy těžkého, rozměrného a drahého vybroušeného kusu skla na povrch Měsíce může být kapalina k výrobě zrcadla přepravena v nádobách a celý dalekohled smontován až na Měsíci. Borra však dodává: „Pokud nenajdeme řešení problémů, které jsme nastínili v článku v časopise Nature, bude to znamenat konec celého projektu.“

Zdroj: spacenews.ru, www.europa a www.photonics
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.



19. vesmírný týden 2025

19. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 5. 5. do 11. 5. 2025. Měsíc po první čtvrti dorůstá k úplňku. Večer je nízko nad obzorem Jupiter a výše najdeme Mars procházející Jesličky. Ráno září u obzoru jasná Venuše a je zde i slabý Saturn. Aktivita Slunce je střední, ale potěší nyní největší skvrna roku 2025. Nastává maximum roje Éta Aquarid. Evropská raketa Vega-C vynesla družici Biomass pro výzkum výměny oxidu uhličitého mezi lesy a atmosférou. Raketa Atlas V vynesla první operační družice sítě Kuiper. Falcon 9 nyní dokáže vynést až 29 Starlinků V2 mini.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

M13

Messier 13 alebo M13 (označovaná aj NGC 6205 a niekedy nazývaná Veľká guľová hviezdokopa v Herkulesovi, Herkulova guľová hviezdokopa alebo Veľká Herkulova hviezdokopa) je guľová hviezdokopa pozostávajúca z niekoľkých stoviek tisíc hviezd v súhvezdí Herkules. Messier 13 objavil Edmond Halley v roku 1714 a Charles Messier ho 1. júna 1764 zaradil do svojho zoznamu objektov, ktoré si nemožno mýliť s kométami; Messierov zoznam vrátane Messiera 13 sa nakoniec stal známym ako Messierov katalóg. Nachádza sa v pravej elevácii 16h 41,7m, deklinácia +36° 28'. Messier 13 je astronómami často opisovaný ako najúžasnejšia guľová hviezdokopa viditeľná pre severných pozorovateľov. M13 má priemer asi 145 svetelných rokov a skladá sa z niekoľkých stoviek tisíc hviezd, pričom odhady sa pohybujú od približne 300 000 do viac ako pol milióna. Najjasnejšou hviezdou v kope je červený obor, premenná hviezda V11, známa aj ako V1554 Herculis, so zdanlivou vizuálnou magnitúdou 11,95. M13 je od Zeme vzdialená 22 200 až 25 000 svetelných rokov a guľová hviezdokopa je jednou z viac ako stovky hviezdokôp, ktoré obiehajú okolo stredu Mliečnej cesty. Posolstvo z Areciba z roku 1974, ktoré obsahovalo zakódované informácie o ľudskej rase, DNA, atómových číslach, polohe Zeme a ďalšie informácie, bolo vyslané z rádioteleskopu observatória Arecibo smerom k Messieru 13 ako pokus o kontakt s potenciálnymi mimozemskými civilizáciami v tejto hviezdokope. M13 bola vybraná preto, lebo išlo o veľkú, relatívne blízku hviezdnu kopu, ktorá bola dostupná v čase a na mieste ceremónie. Hviezdokopa sa bude počas tranzitu pohybovať vesmírom; názory na to, či bude v čase príletu správy schopná prijať správu, sa rôznia. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGBSHO filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 110x60 sec. Lights LRGB na jednotlivý kanál , master bias, 80 flats, master darks, master darkflats 28.4.2025 až 1.5.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »